top of page

膜厚の均一性

序章

マグネトロン スパッタリング コーティングは大面積の成膜に広く適用されており、薄膜の厚さの均一性、成膜率、ターゲット材料の利用率など、コーティング業界では大きな注目を集めています。

 

半導体チップを保護薄膜でコーティングする場合でも、眼鏡レンズに反射防止コーティングを適用する場合でも、プロセス エンジニアは、性能要件を満たすために特定の厚さの仕様を達成する必要があります。膜厚そのものと同じくらい重要なのは、膜厚の均一性です。

Column 650MH High Vacuum Magnetron Sputtering Coater

成膜性能を決定する要因

材料 (または膜) の薄い層を基板上に堆積するために使用されるプロセスである堆積は、半導体やナノテクノロジーなどの産業で一般的に行われています。薄膜堆積は、絶縁体から半導体、金属に至るまでの膜を提供できるさまざまな技術で実現できます。これらの膜は、層間絶縁膜から相互接続まで、さまざまな役割を果たします。

Column VPI SD-900M

柔軟性

システムが持つ機能の範囲である柔軟性は、どのタイプの蒸着システムを購入するかを決定する際の重要な要素となる場合があります。これは、特定のソリューションが好まれることが多い産業用アプリケーションではなく、研究開発環境に当てはまります。堆積できる材料、基板のサイズ、温度範囲、イオンフラックス、堆積速度、周波数、エンドポイント、および圧力動作体制を理解することは、考慮事項のほんの一部です。柔軟性は、将来の計画を可能にするシステムの品質でもあります。研究開発では優先順位が変化し、それらの変化を処理できるシステムを持つことは有用です。これらの考慮事項の上に重なるのが予算です。テクノロジー オプションの種類によって、システムの価格が大幅に異なる場合があります。

VPI コーター モデルのテスト レポート:SD-900M

左側の写真

Results & Conclusions

Shows the result of the X-ray diffraction of the Ga2O3 films growth with various O2 flow rates. The diffraction peaks located at 29.7°, 37.6°, and 58.4° originate from the 400, 402, and 603 of the β-Ga2O3, respectively. For the sample without the O2 flow rate, 400, 402, and 603 of the β-Ga2O3 diffraction peak coexisted; this suggests that the sample was polycrystalline. With the O2 flow rate increased from 0 to 4 sccm, the diffraction peak intensity of the 400 β-Ga2O3 decreased, while the intensity of both the 402 and 603 of β-Ga2O3 diffraction peak increased. Both of these two diffractions belong to the 201 plane family of the monoclinic Ga2O3. The above result illustrates that highly 201-textured β-Ga2O3 samples have been prepared and the orientation of crystal is gradually enhanced when oxygen flow increased. Furthermore, the full width at half maximum (FWHM) values of the 402 β-Ga2O3 peaks are 1.00°, 1.10°, 1.06°, and 0.96° for samples with the O2 flow rate increased from 0 to 4 sccm, respectively. The FWHM value is dependent on the O2 flow rate, and the results suggest a higher O2 flow rate results in improved crystal quality. The minimal FWHM is obtained at 4 sccm of the O2 flow rate, which means the grain size is the largest. The combined results of the XRD peak intensity and the FWHM value of the samples show that higher O2 flow rates lead to better quality.

 

In summary, in terms of the effect of oxygen flow on the structure, optical l properties of the Ga2O3 films have been investigated by XRD, EDX, AFM, transmission spectra, and PL spectra. With the increase in the oxygen flow rate, both the crystal quality and luminescence intensity of the sample first decreased and then enhanced. All these observations suggested that the reduction in the oxygen defect density is responsible for the improvement in the crystal quality and emission intensity of the material, however, there have been no reports about O2 flow rate on the properties of the Ga2O3 growth by RF magnetron sputtering. Our results were similar to those obtained by other techniques and the specific control of various experimental operating parameters. Vu found that the performance of β-Ga2O3-based photodetectors with a higher oxygen partial are better than those prepared at lower oxygen pressures. Wang et al. studied the influence of oxygen flow ratio on the performance of Sn-doped Ga2O3 films by RF magnetron sputtering; they found the sample with higher oxygen flow ratio displays an enhanced performance. Shen’s study revealed oxygen annealing will enhance the performance of β-Ga2O3 solar-blind photodetectors grown by ion-cutting process. Our results demonstrated that high-quality gallium oxide materials can be obtained by adjusting the oxygen flow rate.

bottom of page